Visualization Based Sankey Diagram Decision Making Tree Analysis
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Figure 1: A visualization of the decision tree analysis using the Sankey diagram. The left shows a visualization of the decision trees, and the upper right shows the index of the decision variables.

Abstract - Gains chart

A decision tree has been widely used in recent medical-data analyses [1]. A statistics chart used to analyze decision trees.

In the finding of an important node, the existing decision tree Gains chart usually have node IDs,'%’ for each class, and
visualizations are used to show the ratio of the sample number to the the number of nodes the node contains.

target variable. Additional decision variable information, however, is . Decision variable

needed since the decision tree for the analysis of the medical data is
important for the identification of the variables. Therefore, this study
proposes a visualization that can be used to easily find the important
terminal nodes and grasp the decision variables.

A variable that divides nodes in decision tree analysis.
The first is the most important variable in determining the
target variable. The same variable can appear repeatedly

In a tree.
Design Guidelines . Level
The visualization sample data was obtained using data where the The height of a node in a decision tree.
dementia rate is the target variable and the psychological scores of the The maximum value of the level is equal to the depth of the
demented patients are the input variables. The CHAID using regression tree.
tree that is among the decision tree algorithms is visualized because the
target variable, the dementia/patient ratio, is the continuous type. Visualization
NODE®: 6 680t | The sample data for the visualization was formulated using data where
L 3332% —Gains chart the dementia rate is the target variable and the psychological scores of
Level KDSQ Total the demented patients are the input variables [2]. The CHAID-using
regression tree is visualized from among the decision-tree algorithms
because the target variable, the dementia/patient ratio, is of the
A\ 4 continuous type. Figure 2 shows the visualization.
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